Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates
نویسندگان
چکیده
منابع مشابه
Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes
Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane ox...
متن کاملAerobic methanotrophic bacteria of cold ecosystems.
This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of s...
متن کاملGrowth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic met...
متن کاملMethanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (...
متن کاملWater Dispersal of Methanotrophic Bacteria Maintains Functional Methane Oxidation in Sphagnum Mosses
It is known that Sphagnum associated methanotrophy (SAM) changes in relation to the peatland water table (WT) level. After drought, rising WT is able to reactivate SAM. We aimed to reveal whether this reactivation is due to activation of indigenous methane (CH(4)) oxidizing bacteria (MOB) already present in the mosses or to MOB present in water. This was tested through two approaches: in a tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental Microbiology
سال: 2019
ISSN: 1462-2912,1462-2920
DOI: 10.1111/1462-2920.14877